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Walking Exoskeletons
Pengbo Huang , Graduate Student Member, IEEE, Zhijun Li , Fellow, IEEE,

MengChu Zhou , Fellow, IEEE, and Zhen Kan , Senior Member, IEEE

Abstract—Wearable walking exoskeletons show great poten-
tials in helping patients with neuro musculoskeletal stroke. Key
to the successful applications is the design of effective walk-
ing trajectories that enable smooth walking for exoskeletons.
This work proposes a walking planning method based on the
divergent component of motion to obtain a stable joint angle
trajectory. Since periodic and nonperiodic disturbances are ubiq-
uitous in the repeating walking motion of an exoskeleton system,
a major challenge in the walking control of wearable exoskele-
ton is the joint angle drift problem, that is, the joint angle
motion trajectories are not necessarily periodic due to the pres-
ence of disturbance. To address this challenge, this work develops
an adaptive repetitive control strategy to guarantee that the
motion trajectories of joint angle are repetitive. In particular,
by treating the disturbance as system uncertainties, an adap-
tive controller is designed to compensate for the uncertainties
based on an integral-type Lyapunov function. A fully saturated
learning approach is then developed to achieve asymptotic track-
ing of repetitive walking trajectories. Extensive experiments are
carried out to demonstrate the effectiveness of the tracking
performance.

Index Terms—Adaptive repetitive control, divergent compo-
nent of motion (DCM), integral-type Lyapunov function, walking
exoskeleton.
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I. INTRODUCTION

RECENT advances of wearable walking exoskeletons sig-
nificantly enhance the mobility of patients with neuro

musculoskeletal stroke. Such exoskeletons are being gradu-
ally deployed into military and rehabilitation fields [1]. The
assisted exoskeleton can restore patient’s functions after neuro
musculoskeletal stroke or enhance the strength of the elderly
with dyskinesia when performing a variety of tasks [2], [3],
[4], [5], [6]. However, due to the repetitive trajectories of joint
angle and the influence of periodic and nonperiodic distur-
bance, the desired trajectories of exoskeletons cannot be well
tracked. Thus, it is paramount to investigate adaptive repeti-
tive control strategies to improve the tracking performance of
repetitive motions.

The control system of a walking exoskeleton in general
consists of a walking planner and a controller. The walk-
ing planner generates a desired trajectory to enable smooth
walking while the controller enables trajectory tracking via
feedback control. Recent advances in bipedal robots locomo-
tion are mainly based on the divergent component of motion
(DCM). DCM is a divergent part of linear inverted pendulum
model (LIPM) dynamics and has been employed in trajectory
generation for humanoid robots [7]. Shafiee-Ashtiani et al. [8]
employed a DCM modulation to develop a unified and robust
trajectory generation method. It allows a humanoid robot to
walk on uneven terrains. Hopkins et al. [9] used it to gener-
ate a dynamic locomotion framework on uneven terrains for
a humanoid robot. The trajectory of the height of a generic
center of mass (COM) is obtained by considering the natural
frequency of DCM as a variable. Englsberger et al. [10]
extended the DCM dynamics to three dimensions. They
proposed a 3-D walking planning and tracking controller for
stable bipedal walking motion. Jeong et al. [11] proposed a
DCM adjustment strategy for a biped ankle, hip, and stepping.
Motivated by the above research and the similarity between a
walking exoskeleton and a bipedal robot, a walking planning
method is developed to generate a COM trajectory by using
the stable dynamics between DCM and COM. It is worth men-
tioning that we can obtain joint angle trajectories from COM
and ankle trajectories by utilizing inverse kinematics.

Various control strategies have been developed to achieve
high tracking performance for wearable walking exoskele-
tons [12], [13], [14]. Sun et al. [1] proposed a reduced adaptive
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Fig. 1. Proposed control strategy.

fuzzy decoupling control strategy for a lower limb exoskeleton
to achieve desired tracking performance. A reduced adap-
tive fuzzy system and a compensation strategy to effectively
reduce chattering phenomena. Zou et al. [4] used a slope gra-
dient estimator and dynamic movement primitives to generate
an adaptive gait and then used a proportion integration dif-
ferentiation controller to achieve the joint position tracking.
Martínez et al. [15] proposed a flow controller to provide an
effective leg movement guidance for a walking exoskeleton.
Li et al. [16] used virtual tunnels and fuzzy strategy to syn-
thesize a human–robot cooperative controller for a walking
exoskeleton. The leg motion can be constrained within a spec-
ified tunnel around an expected path. In addition, other repre-
sentative approaches include human-in-the-loop control [17]
and optimal control [18], [19], [20], [21]. However, the
conventional control strategies mentioned above ignore the
periodic repeating leg motion of walking exoskeletons, which
plays an important role in assisting the wearer. Hence, it is
important and meaningful to develop a repetitive controller for
a walking exoskeleton to achieve high tracking performance.

Repetitive control attracts growing attention in robotics [22],
due to its capability in handling repetitive tasks in a finite-
time interval for a variety of robotic systems, for example,
robotic manipulators [23], [24] and permanent magnet syn-
chronous motor servo systems [25]. Existing studies have
investigated some repetitive control issues. Verrelli et al. [26]
proposed a repetitive control strategy to achieve asymptotic
joint position tracking for a robotic manipulator. Li et al. [27]
designed a repetitive learning controller for robotic leg pros-
theses to reduce prosthetic tracking errors. A neural–dynamics
optimization strategy is developed to obtain a repetitive joint
angle motion trajectory for robotic leg prostheses, which is
then tracked using repetitive learning control. Meng et al. [28]
used repetitive learning control to generate a novel active
disturbance rejection strategy for an inverter system. By uti-
lizing the disturbance and closed-loop data, repetitive control
can deal with periodic tracking errors. Motivated by such
research, this work integrates repetitive control into a walking
exoskeleton to enable trajectory tracking.

Fig. 1 summarizes the proposed control strategy. An integral
Lyapunov function is exploited to facilitate the design of an

adaptive repetitive controller for walking exoskeletons. When
considering nonperiodic and periodic disturbance [29], exist-
ing studies are mainly based on prior knowledge or a known
robot model. However, a precise model of walking exoskele-
tons or prior knowledge is generally unavailable in practice.
Therefore, we adopt a learning-based solution to approximate
the unknown dynamics of a given exoskeleton. To deal with
repetitive motion characteristics and periodic unknown dis-
turbance, a fully saturated learning method is developed to
improve the tracking performance in the presence of uncertain
dynamical models. Rigorous analysis shows that uniformly
ultimately bounded convergence is guaranteed for trajectory
tracking. Experimental results demonstrate the effectiveness
of the proposed controller.

This work aims to make the below contributions:
1) Taking into account DCM, COM, and zero moment

point (ZMP), we develop a motion planning method
that can generate effective and executable reference
trajectories for walking exoskeletons.

2) We develop an adaptive repetitive learning controller to
deal with model uncertainties, periodic disturbances, and
periodicity of the walking trajectory. Based on an inte-
gral Lyapunov function, our rigorous analysis shows that
tracking error is uniformly ultimately bounded.

3) In the proposed adaptive repetitive learning control
strategy, we exploit saturation learning to ensure the
boundedness of the desired control input.

II. DYNAMIC WALKING DESIGN BASED ON DCM

In this section, we briefly review the DCM dynamics that are
the fundamentals of our walking planning approach [30]. We
explain how they can be used to represent the overall dynamics
of a walking exoskeleton in a state-space form. Moreover, we
illustrate the procedure of desired trajectory planning.

A. Divergent Component of Motion

The dynamics of LIPM can be represented as [31]

d

dt
xc = Axc(t) + Bp(t) (1)
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Fig. 2. Coupled dynamics between COM and DCM [32].

where

xc =
[

xc

ẋc

]
, A =

[
0 1
ω2 0

]
, B =

[
0

−ω2

]
, ω =

√
g

h
.

xc represents the position of COM, p represents the ZMP, g
is the gravitational acceleration, and h represents the height
of COM. When considering zero input response (i.e., p = 0)
of (1), the eigenvectors of A are

v− =
[

1
−ω

]
and v+ =

[
1
ω

]

which correspond to the eigenvalues ω and −ω, respectively.
Given V = [v−, v+], we define[

η

ζ

]
= V−1

[
xc

ẋc

]
. (2)

Substituting (2) into (1), we can rewrite the dynamics as

d

dt

[
η

ζ

]
= V−1AV

[
η

ζ

]
=
[−ω 0

0 ω

][
η

ζ

]
. (3)

Solving (3) yields

η(t) = C1e−ωt

ζ(t) = C2eωt (4)

where C1 and C2 are nonzero constants. Equation (4) shows
that η converges but ζ diverges as time proceeds. Hence, we
only need to consider the divergent item ζ when designing the
COM of LIPM.

According to (2) and (3), we obtain the DCM dynamics

ζ = xc + ẋc

ω
. (5)

Solving (5) for xc, we have

ẋc = −ω(xc − ζ ). (6)

By differentiating (5) and using (6) and (1), we have

ζ̇ = ẋc + ẍc

ω
= ω(ζ − p). (7)

B. DCM Control

In order to obtain the trajectory of the joint angle, we need
to find the trajectory of COM. Motivated by [32], by consider-
ing (6) and Fig. 2, we use DCM dynamics (7) to plan a COM
trajectory. Considering a constant ZMP p, we can obtain the
solution of (7) as follows:

ζ(t) = eωtζ0 + (
1 − eωt)p. (8)

Considering the dynamic update process of ζ , we replace
initial ζ0 with the current DCM ζ and rewrite (8) as

Fig. 3. Strategy for generating the centroid trajectory xc.

Fig. 4. Shifting DCM from one foot to another foot (left) and smoothing
the DCM reference trajectory (right).

p = ζd − eωdT ζ

1 − eωdT
= 1

1 − b
ζd − b

1 − b
ζ (9)

where dT represents the time span to reach the desired DCM
position ζd and b = eωdT and ζd represents ζd(t). This con-
trol law is summarized in Fig. 3, and [32] proves its stability.
In general, we can hold the constant ZMP in the middle of
the foot in order to obtain a stable walking gait. Constant
ZMP has advantages in comparison with nonconstant ZMP.
Nonconstant ZMP may increase the risk of the robot’s falling,
because ZMP may be at the edge of the support polygon. The
support polygon represents the support area to keep a robot
walking stably [33]. Therefore, we keep ZMP as a constant to
ensure that ZMP is always within the feasible support polygon
region.

Fig. 4 shows a schematic of the robot’s walking steps. DCM
is shifted from one footprint to the next during each step.
ζE represents the desired DCM position at the end of a step.
Considering the relation between COM and DCM as shown
in (5), exoskeleton can shift its COM from the initial COM
position xc0 to the final one. ζE and the desired step time are
used to obtain a reference DCM ζR to be introduced next.

C. Reference Trajectory Generation of DCM

In order to generate the reference trajectory of DCM, we
define the span of time dT as a constant value. ζE is the target
point of DCM for each step as shown in Fig. 4. According
to ζE and (9), we obtain the desired constant ZMP. Then, we
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can calculate a reference ζR for each time step via (8) and the
desired ZMP. According to (8), DCM is shifted within dT to
the position in which the reference ζR would be at t+dT [32].
Therefore, we set desired DCM ζd(t) = ζR(t + dT) in (9). We
set ζd = [ζ x

d , ζ
y
d ], where ζ x

d represents desired DCM in the
x-axis direction and ζ

y
d represents desired DCM in the y-axis

direction.

D. Smoothing DCM Reference Trajectory

Fig. 4 (left) shows a schematic of the original DCM refer-
ence trajectory, which leads to a zigzag trajectory [red lines in
Fig. 4 (left)]. It represents the discontinuity of the first deriva-
tive of DCM, and further, this leads to the discontinuity of the
first derivative of the generated COM trajectory, which may
cause damage to the wearer of the walking exoskeleton when
the wearer switches between left and right feet to walk. Fig. 4
(right) shows the outline for the generation of DCM trajectory
with smoothing transitions. The DCM trajectory generation
builds on the idea proposed in [10], which leads to a smooth
DCM reference trajectory to guarantee continuity of the first
derivative of the DCM. The basic idea of the approach we
chose is using a sixth degree polynomial to round the DCM.
A polynomial parameter matrix can be constructed as

Pt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
0 Tt/2 Tt 1 1 0 0
0 (Tt/2)2 (Tt)

2 0 2Tt 2 2
0 (Tt/2)3 (Tt)

3 0 3(Tt)
2 0 6Tt

0 (Tt/2)4 (Tt)
4 0 4(Tt)

3 0 12(Tt)
2

0 (Tt/2)5 (Tt)
5 0 5(Tt)

4 0 20(Tt)
3

0 (Tt/2)6 (Tt)
6 0 6(Tt)

5 0 30(Tt)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where Tt represents the total length of ζ x
d for smooth transition

as shown in Fig. 4. With Pt, for any ζ x
d ∈ [0, Tt], the ζ

y
d DCM

position can be computed as

ζ
y
d = PbPt

−1Pζ (11)

where Pb = [ζA ζB ζC ζ̇A ζ̇C ζ̈A ζ̈C], Pζ =
[1 ζ x

d ζ x
d

2 ζ x
d

3 ζ x
d

4 ζ x
d

5 ζ x
d

6]T . ζA, ζB, ζC, ζ̇A, ζ̇C, ζ̈A and ζ̈C

are boundary conditions. ζA, ζ̇A, and ζ̈A denote the initial
ζ

y
d position, velocity, and acceleration, respectively. ζC, ζ̇C,

and ζ̈C represent the final DCM position, velocity, and
acceleration, respectively. ζB represents the ζ

y
d position at the

middle moment of Pt.
So far, we can obtain a continuous differentiable ζd trajec-

tory and COM one, as shown in Figs. 5 and 6. We need to
plan the trajectory of the ankle joint of the exoskeleton, and
then we can get the trajectory of the joint angle of the walking
exoskeleton by inverse kinematics [34], [35].

E. Walking Trajectory Generation

Cubic spline interpolation is a common method in trajectory
planning [36]. Motivated by [36], in this work, we use specific
time points as the foot constraint conditions and then we use
cubic spline interpolation to interpolate the ankle trajectory
pf = [xf , zf ], where xf represents the trajectory of the ankle
on the sagittal plane and zf represents the trajectory of the

Fig. 5. Continuous differentiable desired ζd trajectory.

Fig. 6. Continuous differentiable xc trajectory.

ankle on the vertical plane. Noting that the trajectory of the
ankle is periodic, so we only consider t ∈ [0, TS]. The foot
constraint conditions are shown as

xf (t) =
⎧⎨
⎩

0, t = 0
Ls
2 , t = tX

Ls, t = TS

(12)

and

zf (t) =
⎧⎨
⎩

0, t = 0
hf , t = tZ
0, t = TS

(13)

where Ls denotes the step length, tX denotes the time when
the ankle reaches (Ls/2), and tZ denotes the time when the
ankle reaches the highest ankle lift height hf . Finally, we use
the generated position xc of the COM and the foot trajectory,
which are translated to the commanded joint angles using the
inverse kinematics of the robot.

III. ADAPTIVE REPETITIVE WALKING CONTROL DESIGN

A. Dynamics of Wearable Walking Exoskeleton

Following [37], the dynamics of a lower-limb exoskeleton
can be written as

M(q)q̈ + C
(
q, q̇

)
q̇ + G(q) + D(t) + Dd(t) = τ (14)

where M(q) ∈ R
n×n represents an inertia term, C(q, q̇) ∈

R
n×n is a centripetal and Coriolis term, G(q) ∈ R

n denotes
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a gravity vector, D(t) ∈ R
n represents frictional force and

disturbance, Dd(t) ∈ R
n represents nonperiodic disturbance,

τ ∈ R
n denotes a control torque vector, and q ∈ R

n is a joint
angle vector.

We define x1 = q, x2 = q̇, x = [x1
T , x2

T ]T , and denote the
desired walking trajectory for the exoskeleton as qd ∈ R

n. By
substituting x1, x2, and ẋ1 = x2 into (14), we can rewrite it
in a state-space form as⎧⎨

⎩
ẋ1 = x2
ẋ2 =
M−1(q)

[−C
(
q, q̇

)
x2 − G(q) − D(t) − Dd(t) + τ

]
.

(15)

Assumption 1: The desired trajectory qd is periodic with
known period T and D(t) is also periodic with the same
period [27], that is, qd(t) = qd(t − T) and D(t) = D(t − T).

Remark 1: Assumption 1 implies that the desired trajectory
qd and its derivative q̇d as well as the disturbance D(t) are
periodic.

Let �M ∈ R
n×n be the model uncertainty. M(q) can be

rewritten as

M(q) = Md(q) + �M(q) (16)

where Md(q) = diag[Md11(q), . . . , Mdnn(q)] represents the
known nominal model. For simplicity, let us use �M to
represent �M(q). According to (15), (16) can be rewritten as

Md(q)ẋ2 = P(x) + τ + Q (17)

where P(x) = (I − �MM−1(q))(−C(q, q̇)x2 − G(q)) ∈ R
n

and Q = Q1 + Q2. We define Q1 = −(I − �MM−1(q))D(t)
and Q2 = −�MM−1(q)τ − (I −�MM−1(q))Dd(t). According
to [37], we obtain the following result.

Lemma 1: If F(t) is differentiable continuous, ∀t ∈ [t0, t1],
it satisfies δ1 ≤ ||F(t) || ≤ δ2, and δ1 and δ2 are positive
constants, then its derivative Ḟ(t) is bounded.

Proof: According to the Lagrange mean-value theorem, ∀ t,
we obtain F(t) − F(0) = Ḟ(ξ)(t − 0) where ξ ∈ (0, t). Due
to δ1 ≤ ||F(t) || ≤ δ2, δ1 − δ2 ≤ F(t) − F(0) ≤ δ2 − δ1 is
bounded, it follows that Ḟ(t) is bounded.

Assumption 2: According to Lemma 1, if we assume that
Q2 is bounded, then Q2 and Q̇2 are all bounded, where Q̇2
represents the first derivative of Q2, that is, ∀ t ∈ R

+, ||Q2||
and ||Q̇2|| are all less than an unknown positive constant.

Remark 2: According to [38], input saturation is universal
for a physical actuator and the input torque τ is saturated
in practical nonlinear system. M(q) represents the bounded
inertia matrix [39], and �M is a part of the inertia matrix,
which is also bounded. Therefore, we can conclude that Q2 is
bounded. According to Lemma 1, Q̇2 is also bounded.

B. Control Design

The control objective is to find a controller τ such that
the output x1 follows a given reference signal qd. Define the
following position error e and filtered error z:

e = x1 − qd (18)

z = �e + ė (19)

where � is a diagonal positive constant matrix. According
to (15) and (19), we have

ż = M−1
d (q)

[
P(x) + Q + τ

]+ ν (20)

where ν = [ν1, . . . , νn]T with

ν = −q̈d + �ė. (21)

Let νf = q̇d − �e. Then ν = −ν̇f . According to (16),
Md can be defined as a known model. Thus we can choose
Md = Md(x1, θz + νf ). For the convenience of a controller’s
design, the following scalar function is adopted:

Vf = zTBθ z =
n∑

i=1

z2
i

∫ 1

0
θBαii

(
x1i, θzi + νfi

)
dθ (22)

where Bθ = ∫ 1
0 θBα(x1, θz + νf )dθ and Bα(x1, θz +

νf ) = Md(x1, θz + νf )α = diag[Bα11 , . . . , Bαnn]. α =
diag[α11, . . . , αnn], and θ is a scalar independent of z, x,
and νf .

Taking the time derivative of Vf in (22), we have

V̇f = 2zTBθ ż + zT
(

∂Bθ

∂z
ż
)

z

+ zT
(

∂Bθ

∂x1
ẋ1

)
z + zT

(
∂Bθ

∂νf
ν̇f

)
z

= 2zTBθ ż + zTBα ż − 2zTBθ ż

+
n∑

i=1

z2
i

∫ 1

0
θ

[
∂Bαii

∂x1i
ẋ1i + ∂Bαii

∂νfi
ν̇fi

]
dθ

= zTBα ż +
n∑

i=1

z2
i

∫ 1

0
θ

[
∂Bαii

∂x1i
ẋ1i + ∂Bαii

∂νfi
ν̇fi

]
dθ. (23)

According to [40] and (22), we know zi(∂Bαii/∂νfi) =
(∂Bαii/∂θ). Since ν̇f = −ν, we have

n∑
i=1

z2
i

∫ 1

0
θ

[
∂Bαii

∂νfi
ν̇fi

]
dθ = zT

∫ 1

0
θ

[
∂Bα

∂νf
ν̇f

]
zdθ

= −zT
∫ 1

0
θ

[
∂Bα

∂θ
ν

]
dθ

= −zTBαν + zT
∫ 1

0
Bανdθ. (24)

We have
∑n

i=1 z2
i

∫ 1
0 θ [(∂Bαii/∂x1i)ẋ1i]dθ = zT

∫ 1
0 θ [(∂Bα/

∂x1)ẋ1]zdθ . Substituting (24) into (23) and using (20), we
obtain

V̇f = zTα
[
P(x) + Q1 + Q2 + τ

]

+ zT
∫ 1

0
Bανdθ + zT

∫ 1

0
θ

[
∂Bα

∂x1
ẋ1

]
zdθ. (25)

We define H(x) = P(x) + h(x) and h(x) = ∫ 1
0 Mdνdθ +

zT
∫ 1

0 θ [(∂Md/∂x1)ẋ1]zdθ . According to [42], we assume that
H(x) and Q1 can be parameterized as

H(x) = βTw(x) (26)

Q1 = φTs(x) (27)

where βT = [βT
1 ,βT

2 , . . . ,βT
n ]T denotes the optimal

constant weight matrix with βi ∈ R
l, w(x) =
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[w1(x), w2(x), . . . , wl(x)]T denotes the regressor vector, φT ∈
R

n×n is the regressor weight matrix, and s(x) ∈ R
n represents

a regressor vector. In practical application, we can choose
model-free or other parametric methods to deal with H(x)

and Q1.
Given the expressions in (26), we have

V̇f = zTα
[
βTw(x) + Q + τ

]
. (28)

According to the above analysis, one has the following ideal
control:

τ = −α−1κz − βTw(x) (29)

where κ is a positive definite constant matrix with appropriate
dimensions.

Substituting (29) into (28), we obtain

V̇f = −zTκz + zTαφTs(x) + zTαQ2. (30)

Remark 3: When there exists disturbance, that is, φ �= 0,
the system stability cannot be ensured if the controller in (30)
is used. Thus, we have to introduce an additional controller to
deal with the unknown time varying uncertainty. In this article,
we combine the feedback controller (29) with a repetitive con-
trol strategy to compensate for time varying uncertainty. We
use an adaptive repetitive control law to estimate φ in order
to obtain an effective compensation performance. In addition,
we use a disturbance observer to deal with Q2.

C. Adaptive Repetitive Control

The saturation function is defined as satd̄(d) =
diag[ satd̄1

(d1), . . . , satd̄n
(dn)]T ∈ R

n×n with

satd̄i
(di) =

⎧⎨
⎩

d̄1
i , di < d̄1

i
di, d̄1

i ≤ di ≤ d̄2
i

d̄2
i , di > d̄2

i

(31)

where i = 1, 2, . . . , n, and di is a scalar. We use ∗ to represent
a scalar. ∗̄1 and ∗̄2 represent the lower and upper bounds of
∗, respectively. We define b = [b1, . . . , bn] ∈ R

n×n.
Lemma 2 [44]: For di and bi, if we have b̄1

i ≤ di ≤ b̄2
i , i =

1, 2, . . . , n, then[
(γ + 1)di −

(
γ bi + satb̄i

(bi)
)]T

�
[
bi − satb̄i

(bi)
]

≤ 0(32)

where γ ≥ 0 is a scalar and � > 0 is also a scalar.
Consider the following repetitive control:

τ = τ1 + τ2 (33)

where the feedback controller is τ1 = −α−1κz −βTw(x), and
τ2 is a repetitive controller given as

τ2 = −φ̂Ts(x) (34)

with the estimate for φ that is updated by the partially saturated
learning law

φ̂(t) =
{

satφ̄T

(
φ̂T(t)

)
+ R(t), t > 0

0, t ∈ [−T, 0]
(35)

where R(t) = diag[�1α1s1(x)z1, . . . , �nαnsn(x)zn], φ̂(t) =
diag[φ̂1(t), . . . , φ̂n(t)], � = diag[�1, . . . , �n] is a positive

diagonal matrix, φ̂T(t) = φ̂(t − T), and φ̄T = [φ̄T1, φ̄T2 ]
represents the bounded value. For simplicity, we use φ̂i to
represent φ̂i(t).

Combining (28) and (33), we can obtain

V̇f = −zTκz + zTαφ̃Ts(x) + zTαQ2 (36)

where φ̃ = φ − φ̂.
Define the Lyapunov function candidate

V1 = Vf + Vr (37)

with

Vr = (1/2)

n∑
i=1

∫ t

t−T
φ̃i(τ )�−1

i φ̃i(τ )dτ. (38)

By Lemma 2, for the case γ = 1, we have[
2φi − φ̂Ti − satφ̄Ti

(
φ̂Ti

)]
�−1

i

[
φ̂Ti − satφ̄Ti

(
φ̂Ti

)]
≤ 0. (39)

We use φT to represent φ(t − T), and φT =
diag[φTi, . . . , φTn ] ∈ R

n×n. We take the derivative of Vr

to obtain

V̇r =
n∑

i=1

1

2

[
φ̃i�

−1
i φ̃i −

(
φTi − φ̂Ti

)
�−1

i

(
φTi − φ̂Ti

)]
. (40)

Using (φTi −φ̂Ti)�
−1
i (φTi −φ̂Ti) and φ(t − T) = φ(t), we have

(
φTi − φ̂Ti

)
�−1

i

(
φTi − φ̂Ti

)

= φTi�
−1
i φTi − 2φi�

−1
i φ̂Ti + φ̂Ti�

−1
i φ̂Ti

= φTi�
−1
i φTi − 2φi�

−1
i φ̂Ti + φ̂Ti�

−1
i φ̂Ti

+ 2φi�
−1
i satφ̄Ti

(
φ̂Ti

)
− 2φTi�

−1
i satφ̄Ti

(
φ̂Ti

)

+ satφ̄Ti

(
φ̂Ti

)
�−1

i satφ̄Ti

(
φ̂Ti

)

− satφ̄Ti

(
φ̂Ti

)
�−1

i satφ̄Ti

(
φ̂Ti

)

+ satφ̄Ti

(
φ̂Ti

)
�−1

i φ̂Ti − φ̂Ti�
−1
i satφ̄Ti

(
φ̂Ti

)

=
(
φTi − satφ̄Ti

(
φ̂Ti

))
�−1

i

(
φTi − satφ̄Ti

(
φ̂Ti

))

−
(

2φi − satφ̄Ti

(
φ̂Ti

)
− φ̂Ti

)
�−1

i

(
φ̂Ti − satφ̄Ti

(
φ̂Ti

))
.

(41)

According to (39), (40), and (41), we obtain

V̇r ≤
n∑

i=1

1

2

[
φ̃i�

−1
i φ̃i −

(
φTi − satφ̄Ti

(
φ̂Ti

))
�−1

i

(
φTi − satφ̄Ti

(
φ̂Ti

))]

=
n∑

i=1

1

2

(
2φi�

−1
i satφ̄Ti

(
φ̂Ti

)
− 2φ̂i�

−1
i φi

+ φ̂i�
−1
i φ̂i − satφ̄Ti

(
φ̂Ti

)
�−1

i satφ̄Ti

(
φ̂Ti

)

+ 2φ̂i�
−1
i satφ̄Ti

(
φ̂Ti

)
− 2φ̂i�

−1
i satφ̄Ti

(
φ̂Ti

))

=
n∑

i=1

−1

2

[
φ̂i − satφ̄Ti

(
φ̂Ti

)]
× �−1

i

[
φ̂i − satφ̄Ti

(
φ̂Ti

)]

−
n∑

i=1

φ̃T
i �−1

i

[
φ̂i − satφ̄Ti

(
φ̂Ti

)]
. (42)
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Applying the learning law (35) in (42) yields

V̇r ≤
n∑

i=1

(
−1

2
si(x)�isi(x)α

2
i z2

i

)

−
n∑

i=1

(
φ̃isi(x)ziαi

)
(43)

which further indicates that
n∑

i=1

(
φ̃isi(x)ziαii

)
= zTαφ̃Ts(x). (44)

Substituting (44) into (43), we have

V̇r ≤ −zTαφ̃Ts(x) +
n∑

i=1

(
−1

2
si(x)�isi(x)α

2
i z2

i

)
. (45)

Combining (36) and (45), by defining V1 = Vf + Vr, we can
conclude that

V̇1 ≤ −zTκz − 1

2

n∑
i=1

(
si(x)�isi(x)α

2
i z2

i

)
+ zTαQ2. (46)

It can be seen from (46) that V̇1 ≤ 0 is not necessarily true
because of Q2. Therefore, we need to design a controller to
deal with Q2.

Remark 4: As discussed before, the repetitive learning con-
trol can deal with periodic disturbance. According to (35),
the boundedness of φ̂ is guaranteed, but φ̂ cannot be con-
strained within a predefined region due to the unsaturated term
in (35). Therefore, we investigate a fully saturation learning
to address this problem and ensure that φ̂ is within a known
region. Finally, we use a disturbance observer to address Q2.

D. Adaptive Repetitive Control With Disturbance Observer

In order to obtain the full saturation learning law, we have
to ensure that all items of the repeated learning law are con-
strained within a region. In this section, we propose a fully
saturated learning law to learn periodic disturbances and prove
that the closed-loop system is stable through the error conver-
gence analysis. Given the adaptive weight matrix in (26), we
have

H(x) = β̂Tw(x). (47)

Consider the following adaptive repetitive controller:

τ = τ1 + τ2 (48)

where τ1 = −α−1κz − β̂Tw(x) and τ2 = −φ̂Ts(x).
A fully saturated learning law is designed as

φ̂i(t) =
{

satφ̄ei

(
φ̂ei(t)

)
, t > 0

0, t ∈ [−T, 0]
(49)

where φ̂ei(t) = φ̂i(t−T)+�iαisi(x)zi, φ̄e = diag[φ̄e1, . . . , φ̄en ],
φ̂e = diag[φ̂e1, . . . , φ̂en ] and we define φ̄ei as the lower and
upper bounds of φ̂ei .

The following adaptive update law is designed as:

˙̂
βi = �iαiwi(x)zi − �i�β̂i (50)

where �i ∈ R
l×l > 0 is a diagonal matrix and � is a positive

constant.
In order to design an observer, we define an auxiliary

variable

R = Q2 − Kdx2 (51)

where Kd ∈ R
n×n is a diagonal matrix. According to

Assumption 2, we know that

||Q̇2|| ≤ εq (52)

where εq is a positive constant. According to (17), the time
derivative of R in (51) is

Ṙ = Q̇2 − KdMd
−1(P(x) + τ + Q1 + Q2). (53)

We use Q̂2 to represent the estimation of Q2 and define an
estimation update law of R as

˙̂R = −KdM−1
d

(
β̂Tw(x) − h(x) + τ + φ̂Ts(x) + Q̂2

)
(54)

and we can obtain Q̂2 as

Q̂2 = R̂ + Kdx2. (55)

Finally, we can obtain the following controller with an
observer:

τ = τ1 + τ2 − Q̂2. (56)

Q̃2 = Q2 − Q̂2 is the observation estimation error. According
to (55), we have

R̃ = R − R̂ = Q̃2. (57)

Hence, the derivative of Q̃2 is

˙̃Q2 = Ṙ − ˙̂R
= Q̇2 + KdM−1

d

(
−β̃Tw(x) − φ̃Ts(x) − Q̃2

)
. (58)

Define Vq = 1
2 Q̃T

2 Q̃2, and its derivative is

V̇q = Q̃T
2

˙̃Q2 = Q̃T
2

(
Q̇2 − ˙̂Q2

)
. (59)

Substituting (58) into (59), we have

V̇q = Q̃T
2

(
Q̇2 + KdM−1

d

(
−β̃Tw(x) − φ̃Ts(x) − Q̃2

))
. (60)

According to (52) and Q̃T
2 Q̇2 ≤ ([Q̃T

2 Q̃2]/2)+ ([||Q̇2||2]/2),
we obtain

V̇q ≤ Q̃T
2 Q̃2

2
+ ε2

q

2
− Q̃T

2 KdM−1
d β̃Tw(x)

− Q̃T
2 KdM−1

d φ̃Ts(x) − Q̃T
2 KdM−1

d Q̃2. (61)

Consider the following Lyapunov function candidate:

Va =
n∑

i=1

1

2
β̃T

i �−1
i β̃i (62)

where β̃i = βi − β̂i. According to [43], and taking the time
derivative of (62), we have
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V̇a = −
n∑

i=1

β̃T
i �−1

i
˙̂
βi

= −
n∑

i=1

β̃T
i �−1

i

(
�iαiwi(x)zi − �i�β̂i

)

= −
n∑

i=1

β̃T
i αiwi(x)zi +

n∑
i=1

�β̃T
i β̂i

= −zTαβ̃Tw(x) +
n∑

i=1

�β̃T
i

(
βi − β̃i

)

≤ −zTαβ̃Tw(x) +
n∑

i=1

�

(
||β̃i||2

2
+ ||βi||2

2
− ||β̃i||2

)

= −zTαβ̃Tw(x) +
n∑

i=1

�

(
−||β̃i||2

2
+ ||βi||2

2

)
. (63)

Let Vr(t) = (1/2)
∑n

i=1

∫ t
t−T φ̃i(τ )�−1

i φ̃i(τ )dτ . We have

V̇r =
n∑

i=1

1

2

[
φ̃i�

−1
i φ̃i −

(
φTi − φ̂Ti

)
�−1

i

(
φTi − φ̂Ti

)]

= 1

2

n∑
i=1

(
−2φi�

−1
i φ̂i + φ̂i�

−1
i φ̂i

+ 2φTi�
−1
i φ̂Ti − φ̂Ti�

−1
i φ̂Ti

)

= 1

2

n∑
i=1

(
−2φi�

−1
i φ̂i + φ̂i�

−1
i φ̂i + 2φTi�

−1
i φ̂Ti

+ φ̂Ti�
−1
i φ̂i − φ̂i�

−1
i φ̂Ti − φ̂Ti�

−1
i φ̂Ti

)

=
n∑

i=1

−φ̃i�
−1
i

[
φ̂i − φ̂Ti

]
−

n∑
i=1

1

2

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]
.

(64)

By applying the learning law (49) to (64), we have

V̇r =
n∑

i=1

[
φi(t) − satφ̄ei

(
φ̂ei

)]
�−1

i

×
[
φ̂ei − satφ̄ei

(
φ̂ei

)
− �iαisi(x)zi

]

−
n∑

i=1

1

2

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]

=
n∑

i=1

[
φi − satφ̄ei

(
φ̂ei

)]
�−1

i ×
[
φ̂ei − satφ̄ei

(
φ̂ei

)]

−
n∑

i=1

φ̃iαisi(x(t))zi −
n∑

i=1

1

2

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i(t) − φ̂Ti

]

=
n∑

i=1

[
φi − satφ̄ei

(
φ̂ei

)]
�−1

i ×
[
φ̂ei(t) − satφ̄ei

(
φ̂ei(t)

)]

− zTαφ̃Ts(x) −
n∑

i=1

1

2

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]
. (65)

By Lemma 2, for the case γ = 0, [φi(t) − satφ̄ei

(φ̂ei(t))]�
−1
i [φ̂ei(t) − satφ̄ei

(φ̂ei(t))] ≤ 0, which results in

V̇r ≤ −zTαφ̃Ts(x) − 1

2

n∑
i=1

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]
. (66)

Consider the augmented Lyapunov function candidate

V2 = Vf + Vr + Va + Vq. (67)

The time derivative of V2 is

V̇2 = V̇f + V̇r + V̇a + V̇q. (68)

Substituting (56) into (28) yields

V̇f = zTα
[
βTw(x) + Q + τ̂f + τ̂r − Q̂2

]

= zTα
[
βTw(x) + Q − α−1κz

− β̂Tw(x) − φ̂Ts(x) − Q̂2

]

= zTα
[
β̃Tw(x) + φ̃Ts(x) − α−1κz + Q̃2

]

= −zTκz + zTαβ̃Tw(x) + zTαφ̃Ts(x) + zTαQ̃2. (69)

Because w(x) represents a regress vector and s(x) is
a saturation function vector, we have ||w(x)|| ≤ εw and
||s(x)|| ≤ εs. Combining (61), (63), (65), (68), (69),
−Q̃T

2 KdM−1
d β̃Tw(x) ≤ ([Q̃T

2 Q̃2]/2) + ([||KdM−1
d ||2

ε2
w||β̃||2]/2), −Q̃T

2 KdM−1
d φ̃Ts(x) ≤ ([Q̃T

2 Q̃2]/2) +
([||KdM−1

d ||2ε2
s ||φ̃||2]/2), and zTαQ̃2 ≤ ([zTααz]/2) +

([Q̃T
2 Q̃2]/2), we have

V̇2 ≤ −zTκz + zTαβ̃Tw(x) + zTαφ̃Ts(x)

− zTαφ̃Ts(x) − 1

2

n∑
i=1

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]

− zTαβ̃Tw(x) +
n∑

i=1

�

(
||βi||2

2
− ||β̃i||2

2

)

+ zTαQ̃2 + Q̃T
2 Q̃2

2
+ ε2

q

2
− Q̃T

2 KdM−1
d β̃Tw(x)

− Q̃T
2 KdM−1

d φ̃Ts(x) − Q̃T
2 KdM−1

d Q̃2

≤ −zTκz − 1

2

n∑
i=1

[
φ̂i − φ̂Ti

]
�−1

i

[
φ̂i − φ̂Ti

]

+
n∑

i=1

�

(
||βi||2

2
− ||β̃i||2

2

)

+ zTααz
2

+ Q̃T
2 Q̃2

2
+ Q̃T

2 Q̃2

2
+ ε2

q

2

+ Q̃T
2 Q̃2

2
+ ||KdM−1

d ||2ε2
w||β̃||2

2
+ Q̃T

2 Q̃2

2

+ ||KdM−1
d ||2ε2

s ||φ̃||2
2

− Q̃T
2 KdM−1

d Q̃2. (70)

Considering that φ̂i is a saturated variable, we have |φ̃i| =
|φi − φ̂i| ≤ 2φ̄. Hence, ||φ̃||2 ≤ ∑n

i=1(2φ̄) = 4nφ̄2.
Equation (70) can thus be rewritten as

V̇2 ≤ −zT
(
κ − αα

2

)
z − Q̃T

2

(
KdM−1

d − 2I
)

Q̃2

− � − ||KdM−1
d ||2ε2

w

2

n∑
i=1

β̃i
T
β̃i + ε

≤ −zT
(
κ − αα

2

)
z + ε (71)
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where ε = (ε2
q/2) + ([4||KdM−1

d ||2ε2
s nφ̄2]/2) +∑n

i=1 �(||βi||2/2). Because βi represents the optimal
weight and ||βi||2 is also a bounded value.

We define the minimum eigenvalue of (κ − [αα/2]) as λ̌a.
From (71), we have

V̇2 ≤ −λ̌azTz + ε. (72)

Thus, V̇2 < 0 is achieved outside the region {z|zTz ≤ (ε/λ̌a)}.
So, z is ultimately bounded with

lim
t→∞ ||z|| ∈

[
−
√

ε

λ̌a
,

√
ε

λ̌a

]
. (73)

Equations (72) and (73) imply that V2(t) ≤ 0 outside a com-
pact set, which follows that all signals in the closed-loop
system in (14) are bounded.

IV. EXPERIMENTAL VERIFICATION

In order to verify the effectiveness of our trajectory planning
method and the tracking performance of adaptive repeti-
tive controller, a healthy subject (male, 24 years old, height
178 cm, weight 73 kg) participates as a volunteer. The par-
ticipant is required to wear the exoskeleton and walk forward
for about 50 s. To further test its performance for the elder
or patients, the participant is required to use a crutch during
walking.

We have developed a walking exoskeleton for experiments,
which has two passive degrees of freedom (DOFs) and eight
active DOFs. Its hip joint has a pitch DOF, a roll DOF, and
a yaw DOF, respectively. Its knee has one pitch DOF, and its
ankle has one passive DOF. The pitch DOF indicates that the
pitch joint of exoskeleton can perform flexion and extension,
the yaw DOF means that the yaw joint of an exoskeleton can
perform rotation, and the roll DOF enables the roll joint of
exoskeleton to perform adduction and abduction. Its hip can
perform flexion, extension, rotation outside and inside, adduc-
tion, and abduction. The ankle joint can perform dorsiflexion
and plantar flexion as a passive DOF. In addition, the length
of the hip is 0.485 m, the length of the foot is 0.275 m, and
the width is 0.125 m in our designed walking exoskeleton.

The hardware devices of our wearable walking exoskeleton
mainly includes a computer, some sensors, and motors. The
eight active joints are driven by a Maxon DC servo motor
with an incremental encoder. Each motor has a 160:1 har-
monic transmission and a maximum speed of 5000 r/min. We
adopt four Copley motion drivers to drive the above eight
Maxon motors and the Copley motion drivers can commu-
nicate with a host computer via a EtherCAT communication
protocol. The host computer as our processing platform runs
a real-time operating system, and its sampling interval of the
motion control engine is 1 ms.

A. Experimental Setting and Design

Before the experiment, the desired joint angle trajectory
is generated based on our exoskeleton model using DCM
mentioned in Section II. Considering a dynamic walking of
exoskeleton in sagittal plane and vertical plane, we have six
active joints for trajectory planning, that is, n = 6, and these

six joints are left hip pitch joint, left knee pitch joint, right
hip pitch joint, right knee pitch joint, right hip roll joint,
and left hip roll joint, respectively. In addition, MATLAB
2018a is used to generate the desired trajectory. The mechani-
cal parameters related to exoskeleton we used are designed
as h = 0.73 m, and the gravitational constant is set as
g = 9.8 m/s2 in trajectory planning. The parameter dT is
selected as 1.3 s, and the total time for smooth transition is
chosen as Tt = 0.26 s. As shown in Fig. 4, the exoskele-
ton starts to walk forward initially from an initial standing
state. Once an initial walking step is completed, exoskele-
ton starts to take the first whole step, and then repeats the
movement of the first whole step in the next walk. Hence,
when planing the joint angle trajectory of exoskeleton, we
divide the joint angle trajectory planning into two stages.
The first stage is the initial walking, and the parameters are
designed as TS = 0.65 s, tX = (TS/1.4) s, Ls = 0.33 m,
hf = 0.05 m, and tZ = (TS/1.5). The second stage con-
sists of repetitive movement of an exoskeleton walking, and
the single step cycle parameter is selected as TS = 1.3 s, so
the whole step cycle is 2 ∗ TS = 2.6 s. Other parameters are
designed as tX = (TS/1.4) s, Ls = 0.66 m, hf = 0.05 m, and
tZ = (TS/1.5). Considering the scenario of helping patients
with neuro musculoskeletal stroke, we can obtain a step cycle
time suitable for patients by stretching the time axis in the
time domain without modifying the trajectory amplitude in
the spatial dimension [45]. In this experiment, to assist patients
to walk appropriately, we stretch the planned trajectory by a
factor of two.

For the planned joint angle trajectory, the adaptive
repetitive control is applied to track the trajectory.
The parameters related to the controller are chosen
as follows: � = diag[420, 500, 420, 550, 400, 400],
κ = diag[0.05, 0.02, 0.05, 0.02, 0.1, 0.1], �i = 5I,
α = 0.1I6×6, � = 2.2I6×6, Kd = 0.0025I6×6, and
Md = 0.001diag[1 + 0.1 sin(q2), 1 + 0.1 cos(q1), 1 +
0.1 sin(q4), 0.2(1 + 0.1 cos(q3)), 1 + 0.1 sin(q6), 1 +
0.1 cos(q5)]. The selected saturated function is
s(x(t)) = (t/1 + |t|), and φei

= {−1, 1}. A method
based on neural network is used in this article, the number of
nodes is set as 256, the basis function wi(x) is selected as the
Gaussian function, the variance is set as 10, β̂i is initialized
to 0.000001, and the input variable is chosen as [qd, q, q̇d, q̇].

B. Results and Analysis

The adaptive repetitive control strategy is used to track the
generated trajectories in the experiments. As shown by the
red line in Figs. 7–9, according to the mechanical structure
and parameters of the exoskeleton and the proposed dynamics
walking desired trajectory planning method, we can gener-
ate an effective desired trajectory. The walking experiment
shows that the generated trajectory is suitable for the walk-
ing exoskeleton. In the adaptive repetitive control strategy, the
fully saturated learning controller is designed to deal with dis-
turbance. The tracking performance is shown in Figs. 7–9.
From Figs. 7–9, we can observe that for the joint trajecto-
ries obtained based on DCM, our proposed adaptive repetitive
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(a)

(b)

Fig. 7. Joint trajectory and the tracking error of left hip pitch and left knee
pitch. Trajectory tracking results of (a) left hip pitch and (b) left knee pitch.

(a)

(b)

Fig. 8. Joint trajectory and the tracking error of right hip pitch and right
knee pitch. Trajectory tracking results of (a) right hip pitch and (b) right knee
pitch.

(a)

(b)

Fig. 9. Joint trajectory and the tracking error of left hip roll and right hip
roll. Trajectory tracking results of (a) right hip roll and (b) left hip roll.

controller can effectively track them, and the position tracking
errors of six joints are all converged to a bounded range.
Fig. 10 shows the control input of each joint in this walk-
ing experiment, which indicates that the control input of each
joint is bounded. Figs. 11 and 12 show the control input of
fully saturated learning. Finally, the update laws of the fully

(a)

(b)

(c)

Fig. 10. Control input of left hip pitch, left knee pitch, left hip roll, right
hip pitch, right knee pitch and right hip roll. (a) Left hip pitch and right hip
pitch. (b) Left knee pitch and right knee pitch. (c) Left hip roll and right hip
roll.

(a)

(b)

(c)

Fig. 11. Fully saturated learning control input of the left leg joint. (a) Left
hip pitch. (b) Left knee pitch. (c) Left hip roll.

(a)

(b)

(c)

Fig. 12. Fully saturated learning control input of the right leg joint. (a) Right
hip pitch. (b) Right knee pitch. (c) Right hip roll.

saturated learning are shown in Figs. 13 and 14, which indi-
cates that the fully saturated learning laws change gradually in
each step cycle and show a trend of gradual saturation of their
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(a)

(b)

(c)

Fig. 13. Saturated learning laws (a) φ̂1, (b) φ̂2, and (c) φ̂6.

(a)

(b)

(c)

Fig. 14. Saturated learning laws (a) φ̂3, (b) φ̂4, and (c) φ̂5.

Fig. 15. Walking snapshots in a walking experiment.

values over time. Some walking snapshots during the walking
experiment are shown in Fig. 15. The experimental results in
this study demonstrate that our proposed walking trajectory
planning method and adaptive repetitive control strategy for a
walking exoskeleton are effective.

Finally, in order to further evaluate the tracking performance
of our proposed controller, two performance indexes are used.
They are mean absolute error (MAE) and root mean square
error (RMSE). A proportional differential (PD) controller
is widely used in robot control [46], [47]. Thus, we use
it to compare with our proposed control strategy. The PD
controller used in the experiment is τ = −Kcpe − Kcd ė
with Kcp = diag[250, 80, 250, 60, 250, 250] and Kcd =
diag[0.5, 0.6, 0.5, 0.2, 1, 1]. The comparison result is listed in
Fig. 16, where LHP, LKP, LHR, RHP, RKP, and RHR repre-
sents left hip pitch, left knee pitch, left hip roll, right hip pitch,

Fig. 16. Results of comparison with PD controller.

right knee pitch, and right hip roll, respectively. As exempli-
fied in Fig. 16, the tracking performance between the proposed
control strategy and PD controller is similar for LHP and RHP.
However, for other joints, the proposed control strategy has a
better tracking performance than the PD controller.

V. CONCLUSION

This work proposes a walking planning method and an
adaptive repetitive control strategy for a walking exoskeleton
to help patients with neuro musculoskeletal stroke. The trajec-
tory of COM is obtained based on the relationship between
COM and DCM. The trajectory of the ankle joint of an
exoskeleton is then generated according to the trajectories of
COM and ankle joint, which is translated to joint angles using
the inverse kinematics of the robot. To deal with model uncer-
tainties, a learning-based solution is developed to compensate
for uncertainties. To deal with periodic disturbances, a fully
saturated learning controller is designed to achieve bounded
tracking performance. Extensive experiments are conducted
to verify the effectiveness of the proposed walking planning
method and the adaptive repetitive control strategy. The walk-
ing experimental results show that the developed trajectory
planning method is effective and the proposed adaptive repet-
itive controller can efficiently deal with model uncertainties
and periodic disturbances.

Although the proposed motion planning method can plan a
walking trajectory for a walking exoskeleton, and the proposed
adaptive repetitive learning controller can effectively track the
trajectory of the exoskeleton, this method has some limitations.
First, we plan the trajectory of the exoskeleton according to
the coupling relationship among DCM, ZMP, and COM. Since
ZMP is used in legged robots, our motion planning method
may only be applied to legged robots, such as exoskeleton
robots and quadruped robots. Second, the saturated learning
controller proposed by us is aimed at periodic trajectory. Thus,
we need to use another controller to deal with nonperiodic
time-varying one. Our next work expects to further improve
the motion planning method. We hope to apply it to quadruped
robots. The motion planning scenario should include going
straight and turning to an arbitrary direction [48], [49]. In
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addition, we can try to improve the saturated learning con-
troller to enable our proposed adaptive repetitive controller to
track more complex trajectories.
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